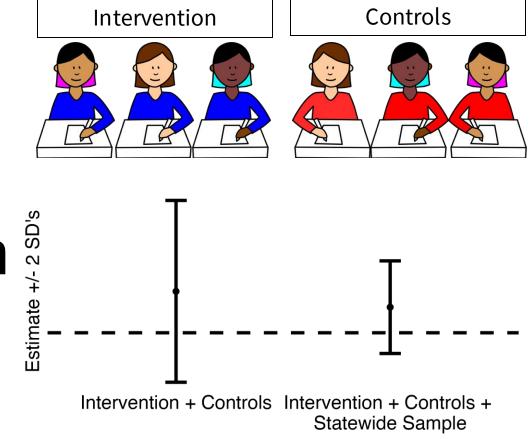
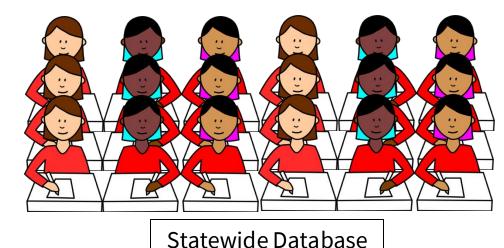
# Separating covariance adjustment from causal effect estimation to leverage auxiliary datasets

Joshua Wasserman and Ben B. Hansen Department of Statistics, University of Michigan







#### How does one typically adjust for covariates?

Analysis of covariance (ANCOVA):

$$Y_i(j) = \vec{x}_i \beta + a_i \tau_j + \epsilon_i$$

 $Y_i(j)$  = potential outcome when assigned to group j  $a_i$  = indicator for assignment to group j  $\vec{x}_i$  = vector of exogenous pre-assignment covariates  $\epsilon_i$  = mean-zero independent noise

## Imputation estimators for average intent-to-treat (ITT) effects

$$\hat{\tau}_j = \overline{\tilde{Y}(j)}_{\{a_i = j\}} - \overline{\tilde{Y}(0)}_{\{a_i = 0\}}$$

$$egin{aligned} & rac{\sum\limits_{a_i=j} w_i ilde{Y}_i(j)}{\sum\limits_{a_i=j} w_i} \ & rac{\sum\limits_{a_i=j} w_i ilde{Y}_i(j)}{\sum\limits_{a_i=j} w_i} \end{aligned}$$

 $w_i = \text{design weight}$ , i.e. inverse probability of assignment weight

 $\hat{\tau}_j$  is the difference in average difference of outcomes and predictions from a **covariance model** f

#### Proposed average ITT effect estimator

- 1. Fit covariance model to a sample comprising study units,  $\mathcal Q$  , and auxiliary units,  $\mathcal C$ , using weights if needed
- 2. Generate model predictions for units in  $\mathcal Q$
- 3. Difference outcomes and predictions for units in  ${\mathcal Q}$
- 4. Difference the average difference between intervention group j and the control group using inverse probability of assignment weights to produce  $\hat{\tau}_j$

**Theorem 1.** Under regularity conditions,  $\hat{\tau}_j \xrightarrow{P} \tau_j^*$ , where  $\tau_j^* = \mathbb{E}[Y(j) - Y(0)]$ .

#### Conventional variance estimation for average ITT effect estimates

$$\widehat{\operatorname{Var}}_{\text{ney}}(\hat{\tau}_j) = \widehat{\operatorname{Var}}(\overline{\tilde{Y}}_j) + \widehat{\operatorname{Var}}(\overline{\tilde{Y}}_0) = \frac{\widehat{\operatorname{Var}}(\tilde{Y}_i(j))}{n_j} + \frac{\widehat{\operatorname{Var}}(\tilde{Y}_i(0))}{n_0}$$

$$\widehat{\operatorname{Var}}(\widetilde{Y}_i(j)) = \frac{\sum\limits_{i \in \mathcal{Q}, a_i = j} (Y_i(j) - f(\vec{x}_i; \hat{\beta}))^2}{n_j - 1}$$

$$n_j = \sum\limits_{i \in \mathcal{Q}} \mathbf{1}(a_i = j)$$

#### Proposed estimator for $\mathrm{Var}(\hat{ au}_j)$

Let  $\tilde{\tau}_j$  be the linear approximation to  $\hat{\tau}_j$  at  $\beta^*$ , the true coefficients of the covariance model (which includes an intercept).

$$\begin{aligned} \operatorname{Var}(\tilde{\tau}_{j}) &= \operatorname{Var}(\hat{\tau}_{j}) \\ &+ \nabla_{\beta} \mathbb{E} \big[ \overline{f(\vec{x}_{i}; \beta)}_{j} - \overline{f(\vec{x}_{i}; \beta)}_{0} \big] \big|_{\beta = \beta^{*}} \operatorname{Cov}(\hat{\beta} - \beta^{*}) \nabla_{\beta} \mathbb{E} \big[ \overline{f(\vec{x}_{i}; \beta)}_{j} - \overline{f(\vec{x}_{i}; \beta)}_{0} \big] \big|_{\beta = \beta^{*}}^{T} \\ &- 2 \cdot \operatorname{Cov}(\overline{\tilde{Y}}_{j} - \overline{\tilde{Y}}_{0}, \nabla_{\beta} \mathbb{E} \big[ \overline{f(\vec{x}_{i}; \beta)}_{j} - \overline{f(\vec{x}_{i}; \beta)}_{0} \big] \big|_{\beta = \beta^{*}} (\hat{\beta} - \beta^{*}) \big) \end{aligned}$$

#### Proposed estimator for $\mathrm{Var}(\hat{ au}_j)$

Let  $\tilde{\tau}_j$  be the linear approximation to  $\hat{\tau}_j$  at  $\beta^*$ , the true coefficients of the covariance model (which includes an intercept).

$$\begin{aligned} \operatorname{Var}(\tilde{\tau}_{j}) &= \operatorname{Var}(\hat{\tau}_{j}) \\ &+ \nabla_{\beta} \mathbb{E} \big[ \overline{f(\vec{x}_{i}; \beta)}_{j} - \overline{f(\vec{x}_{i}; \beta)}_{0} \big] \big|_{\beta = \beta^{*}} \operatorname{Cov}(\hat{\beta} - \beta^{*}) \nabla_{\beta} \mathbb{E} \big[ \overline{f(\vec{x}_{i}; \beta)}_{j} - \overline{f(\vec{x}_{i}; \beta)}_{0} \big] \big|_{\beta = \beta^{*}}^{T} \\ &- 2 \cdot \operatorname{Cov} \big( \overline{\tilde{Y}}_{j} - \overline{\tilde{Y}}_{0}, \nabla_{\beta} \mathbb{E} \big[ \overline{f(\vec{x}_{i}; \beta)}_{j} - \overline{f(\vec{x}_{i}; \beta)}_{0} \big] \big|_{\beta = \beta^{*}} (\hat{\beta} - \beta^{*}) \big) \end{aligned}$$

**Theorem 2.** Let  $\theta = (\beta \ \tau)$ , where  $\beta \in \mathbb{R}^p$  and  $\tau = (\tau_1 \ \ldots \tau_K)$ . Under regularity conditions,  $\sqrt{n}(\hat{\theta} - \theta^*) \xrightarrow{d} \mathcal{N}(0, \Sigma)$ , where  $\Sigma_{p+j, p+j} = Var(\tilde{\tau}_j)$ .

#### Proposed estimator for $\mathrm{Var}(\hat{ au}_j)$

Let  $\tilde{\tau}_j$  be the linear approximation to  $\hat{\tau}_j$  at  $\beta^*$ , the true coefficients of the covariance model (which includes an intercept).

$$Var(\tilde{\tau}_{j}) = Var(\hat{\tau}_{j})$$

$$+ \nabla_{\beta} \mathbb{E} \left[ \overline{f(\vec{x}_{i}; \beta)}_{j} - \overline{f(\vec{x}_{i}; \beta)}_{0} \right] \Big|_{\beta = \beta^{*}} Cov(\hat{\beta} - \beta^{*}) \nabla_{\beta} \mathbb{E} \left[ \overline{f(\vec{x}_{i}; \beta)}_{j} - \overline{f(\vec{x}_{i}; \beta)}_{0} \right] \Big|_{\beta = \beta^{*}}^{T}$$

$$- 2 \cdot Cov(\overline{\tilde{Y}}_{j} - \overline{\tilde{Y}}_{0}, \nabla_{\beta} \mathbb{E} \left[ \overline{f(\vec{x}_{i}; \beta)}_{j} - \overline{f(\vec{x}_{i}; \beta)}_{0} \right] \Big|_{\beta = \beta^{*}} (\hat{\beta} - \beta^{*}))$$

**Theorem 3.** Under the conditions of Theorems 1 and 2 and the assumptions that  $f(\vec{x}_i; \beta) = \mathbb{E}[Y_i(0)|\vec{x}_i]$  and  $\mathbb{E}[Y_i(j) - Y_i(0)] = \tau_j$  for all  $i \in \mathcal{Q}$ ,  $\widehat{Var}(\tilde{\tau}_j) \xrightarrow{P} Var(\tilde{\tau}_j)$ .

#### The data we have

- 14 high schools from one Michigan county matched into 4 pairs and 2 triplets
- 1-2 schools per block randomized to teach algebra course with additional computerized tutoring sessions
- Effects measured using school-level aggregates of standardized test scores
- School-level covariates for adjustment:
  - Demographics: breakdowns by race/ethnicity, gender, and FRPL eligibility; locale/urbanicity
  - Education: school type; Title I status; charter status; magnet status; pupil/teacher ratio; one year of prior average scaled scores and proficiency rates on math and reading standardized tests

6 inverse probability of assignment-weighted (IPW) ITT effect estimates:

- 1. No covariance adjustment
- 2. ANCOVA
- 3. Imputation estimator fitting covariance model to the study sample
- 4. Imputation estimator fitting covariance model to high schools in the county
- 5. Imputation estimator fitting covariance model to high schools in the state
- 6. Imputation estimator fitting high-dimensional covariance model to high schools in the state

#### Variance estimators:

- For estimator 1: Neyman variance estimate
- For estimator 2: HC2-corrected sandwich estimate
- For estimators 3-6:
  - $\widehat{\operatorname{Var}}_{\operatorname{ney}}(\hat{\tau}_j)$
  - $\widehat{Var}(\tilde{\tau}_j)$  with HC1 correction
  - $\widehat{\mathit{Var}}( ilde{ au}_j)$  with HC2 correction

| Covariance               | Model      | Variance                                           | $\mathrm{SE}(\hat{	au})$ |
|--------------------------|------------|----------------------------------------------------|--------------------------|
| Sample                   | Complexity | Estimator                                          |                          |
|                          |            | HC1                                                | 1.817                    |
| Statewide                | High       | HC2                                                | 1.976                    |
|                          |            | $\widehat{	ext{Var}}_{	ext{ney}}(\hat{	au})$       | 1.888                    |
|                          | Low        | HC1                                                | 4.806                    |
| Statewide                |            | HC2                                                | 5.248                    |
|                          |            | $\widehat{	ext{Var}}_{	ext{ney}}(\hat{	au})$       | 5.253                    |
|                          |            | HC1                                                | 2.021                    |
| County                   | Low        | HC2                                                | 2.179                    |
|                          |            | $\widehat{	ext{Var}}_{	ext{ney}}(\hat{	au})$       | 2.207                    |
| Assignment Sample        | Low        | HC1                                                | 0.988                    |
|                          |            | HC2                                                | 1.017                    |
|                          |            | $\widehat{	ext{Var}}_{	ext{ney}}(\hat{	au})$       | 1.397                    |
| ANCOVA                   | Low        | HC2                                                | 2.188                    |
| No Covariance Adjustment | -          | $\widehat{\mathrm{Var}}_{\mathrm{ney}}(\hat{	au})$ | 8.043                    |

Table 1. Standard error estimates for various estimates of the PAITT of Cognitive Tutor after the first study year.

# Look for the "propertee" package on CRAN soon!

#### Use this method with the R package "propertee"

1. Fit a covariance model using Im, glm, Imer, Imrob, or glmrob:

```
cmod <- model_fitting_fn(model_form, cmod_data, weights = optional_weights)</pre>
```

2. Specify information about the study design

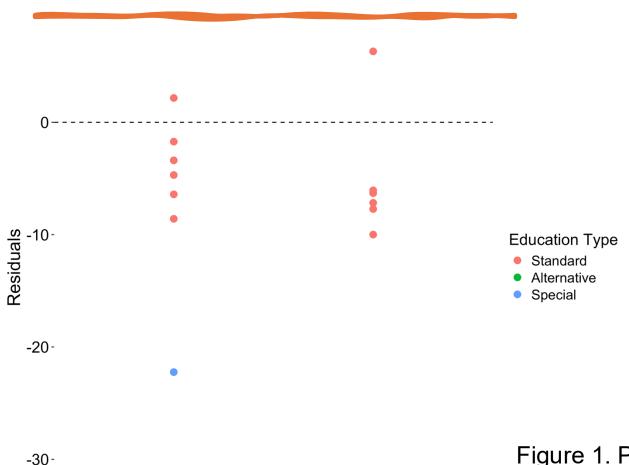
```
\label{lem:design} $$ \ensuremath{$^{-}$ rct_design(assignment_col $\sim unitid(assignment_unit_col) + block(block_col), $$ study_data) $$
```

3. Combine covariate adjustment and IPW weights to estimate ITT effects

```
itt_est <- lmitt(outcome_col \sim 1, study_data, design = des, weights = ate(des), offset = cov_adj(cmod))
```

#### Original study

- 74 middle and 73 high schools matched into pairs and triplets
- 1-2 schools per block randomized to teach algebra course with additional computerized tutoring sessions
- Effects measured using algebra-specific pre- and post-tests
- Student-level covariates for adjustment:
  - Demographics: race/ethnicity; gender; socioeconomic status; free- or reduced-price lunch (FRPL) eligibility
  - Education: English-language learner; special education/gifted program participant; two years of prior standardized test scores



Cognitive Tutor

Control

**Assignment Group** 

Figure 1. Partial residuals by school type and assignment group when covariance model is fit to high schools in the state.

| Covariance        | Variance                                                       | $ \operatorname{SE}(\hat{	au}) $ |
|-------------------|----------------------------------------------------------------|----------------------------------|
| Sample            | Estimator                                                      |                                  |
|                   | HC1                                                            | 2.495                            |
| Statewide         | HC2                                                            | 2.69                             |
|                   | $\widehat{	ext{Var}}_{	ext{ney}}(\hat{	au})$                   | 2.562                            |
|                   | HC1                                                            | 1.823                            |
| County            | HC2                                                            | 1.929                            |
|                   | $\widehat{	ext{Var}}_{	ext{ney}}(\hat{	au})$                   | 2.207                            |
|                   | HC1                                                            | 0.424                            |
| Assignment Sample | HC2                                                            | $\mid 0.401 \mid \mid$           |
|                   | $\widehat{\operatorname{Var}}_{\operatorname{ney}}(\hat{	au})$ | 0.908                            |
| ANCOVA            | HC2                                                            | N/A                              |

Table 2. Standard error estimates when the parsimonious covariance adjustment model includes an indicator variable for education type.